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Аннотация 

Введение. В данной работе рассматривается задача прогнозирования прочности центрально сжатых коротких 

трубобетонных колонн квадратного сечения с использованием методов машинного обучения. Традиционные ме-

тоды, такие как метод конечных элементов и теоретико-экспериментальный подход с подбором эмпирических 

формул, требуют значительных вычислительных ресурсов и времени. В то же время эти методы не всегда спо-

собны учитывать сложные нелинейные зависимости между параметрами. Основная цель — разработка высоко-

точной модели, способной предсказывать несущую способность колонн на основе ключевых параметров. 

Материалы и методы. Для исследования была сгенерирована база данных, состоящая из результатов числен-

ных экспериментов по расчету несущей способности трубобетонных колонн квадратного поперечного сечения в 

физически нелинейной постановке. В рамках проведенного исследования построены модели на основе методов 

машинного обучения, реализованные с использованием интерактивной вычислительной платформы Jupyter Note-

book. Основным методом является механизм CatBoost (Gradient Boosting Regressor). Обучение построенных мо-

делей произведено с использованием методов нелинейной оптимизации. 

Результаты исследования. В статье проведена оценка степени влияния каждого входного параметра на ито-

говые предсказания модели. Получены результаты по величине степени влияния для моделей CatBoost и Ran-

dom Forrest Regressor (RFR). Оценка качества построенных моделей по величине R2 составила 98 % для 

CatBoost и 94 % — для RFR. 

Обсуждение и заключение. Разработанный подход демонстрирует высокую эффективность в задаче прогнози-

рования несущей способности трубобетонных колонн, обеспечивая баланс между точностью результатов и вы-

числительной сложностью. 

Ключевые слова: трубобетонные колонны, методы машинного обучения, прогнозирование, несущая способ-

ность, искусственный интеллект, искусственные нейронные сети. 
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Abstract 

Introduction. In this paper, we consider the problem of predicting the strength of square-section centrally compressed 

short concrete-filled tubular columns using machine learning methods. Traditional methods, such as the finite element 

method and the theoretical-experimental approach involving selection of empirical formulas require significant compu-

tational resources and time. At the same time, these methods are not always capable of accounting for complex nonlinear 

dependencies between the parameters. The key objective is to develop a high-precision model capable of predicting the 

load-bearing capacity of columns using the major parameters. 

Materials and Methods. For the current study, a database was generated containing the results of numerical experiments 

on calculating the load-bearing capacity of square-section concrete-filled tubular columns in a physically nonlinear for-

mulation. As part of the study, models based on machine learning methods were designed and implemented using the 

Jupyter Notebook interactive computing platform. The main method is the CatBoost mechanism (Gradient Boosting Re-

gressor). The resulting models were trained by means of nonlinear optimization methods. 

Results. The article evaluates the degree of impact of each of the input parameters on the final predictions of the model. 

The results on the degree of impact for the CatBoost and Random Forrest Regressor (RFR) models are obtained. The 

quality of the resulting models evaluated using the R2 value was 98% for CatBoost and 94% for RFR. 

Discussion and Conclusions. The resulting approach has proved to be highly efficient in predicting the load-bearing 

capacity of concrete-filled tubular columns, providing a balance between the accuracy of the results and computational 

complexity. 

Keywords: concrete-filled tubular columns, machine learning methods, prediction, load-bearing capacity, artificial intel-

ligence, artificial neural networks 
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Введение. Оценка технического состояния монолитных железобетонных конструкций в настоящее время 

остается актуальной и востребованной задачей, особенно с учетом необходимости обеспечения их долговечности 

и безопасности. Решение такого рода задач можно реализовать не только аналитическими и расчетными мето-

дами [1–3], но и более современными хорошо зарекомендовавшими себя методами искусственного интеллекта 

(ИИ) и машинного обучения (МО) [4–6]. 

Широко применяемый метод конечных элементов (МКЭ) позволяет учитывать сложные физические про-

цессы, такие как нелинейное поведение материалов, взаимодействие стали и бетона [7], а также влияние различ-

ных нагрузок [8]. Однако основным недостатком МКЭ является высокая вычислительная сложность и необходи-

мость в большом количестве параметров для калибровки модели. 

Методы МО представляют собой современный инструмент анализа данных, который позволяет выявлять 

сложные нелинейные зависимости между входными и выходными параметрами [9–11]. В отличие от эмпириче-

ских формул машинное обучение позволяет автоматически находить закономерности в больших объемах дан-

ных, что делает его более универсальным и эффективным методом прогнозирования. 

В работе [12] авторы исследуют образование дефектов в железобетонных конструкциях алгоритмами искус-

ственного интеллекта, такими как случайный лес (RF), метод опорных векторов (SVM), дерево решений (CART) 

и адаптивное усиление (Gradient Boosting). 

В современной практике при прогнозировании прочности железобетонных конструкций все чаще активно 

используют сверточные нейронные сети (CNN) [13–15]. Например, в работе [13] авторами разработана CNN, 

способная к двумерному полномасштабному прогнозированию образования трещин на ранних этапах и описа-
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нию всего процесса разрушения. Модель, способная предсказывать как инициирование трещин, так и их распро-

странение, предложена в работе [14]. Для мониторинга состояния железобетонных конструкций на сложных объ-

ектах строительства авторы статьи [15] используют нейронную сеть полностью сверточного типа (FCN) для сег-

ментации изображений и локализации трещин на бетонных поверхностях с учетом неоднородности свойств бе-

тона. Разработанная FCN-модель минимизирует ложноположительные и ложноотрицательные результаты, обла-

дает высоким качеством, что позволяет сегментировать мелкие и сложные трещины. 

В статье [16] разработан автоматизированный классификатор, в функционал которого входит автоматическое 

определение и классификация трещин в железобетонных колоннах различного уровня сложности методами глу-

бокой CNN (DCNN). Предложенная DCNN-модель анализирует сложные текстуры и шумы, показывает высокую 

точность при детекции трещин, составляющую 96 %, за счет глубины слоев модели и расширения каждого слоя 

параллельным образом. 

Авторы работы [17] для прогнозирования трещин во времени продвинулись дальше в своих исследованиях и 

построили гибридную модель объединив DCNN и рекуррентные нейронные сети (RNN). 

Таким образом, алгоритмы МО, несомненно, обладают рядом преимуществ, таких как выявление шаблонов в 

больших объемах данных, обнаружение скрытых закономерностей и зависимостей с учетом многомерности дан-

ных, автоматический анализ оценки состояния железобетонных конструкций на основе ключевых параметров, 

оптимизация алгоритмов МО и параллельные вычисления. 

Однако указанные алгоритмы МО все еще имеют недостатки, такие как неточность или слабость, ограничен-

ная способность к обобщению и работа на низкой скорости [18, 19]. Одним из ключевых недостатков является 

зависимость моделей машинного обучения от качества обучающих данных и их объема. 

При обучении большинства моделей искусственного интеллекта для прогнозирования прочности трубобетон-

ных колонн используются данные натурных экспериментов [20–22]. Такие эксперименты, как правило, прово-

дятся на образцах с относительно небольшими по сравнению с реальными конструкциями размерами попереч-

ного сечения. С учетом плохой способности методов машинного обучения к экстраполяции данных при прогно-

зировании несущей способности реальных конструкций возможны большие погрешности. Выходом из этой си-

туации является использование комбинированного подхода, когда данные для обучения формируются путем ко-

нечно-элементного расчета конструкций с реальными размерами по методике, прошедшей валидацию на экспе-

риментальных данных. 

Целью данного исследования является разработка моделей машинного обучения для прогнозирования проч-

ности центрально сжатых трубобетонных колонн квадратного сечения с использованием данных, полученных 

описанным выше путем. 

Материалы и методы. Для исследования была сгенерирована база данных, представляющая собой резуль-

таты численных экспериментов по расчету несущей способности коротких трубобетонных колонн квадратного 

поперечного сечения по методике, описанной в работе [23]. Эти данные были использованы для разработки и 

анализа моделей, сочетающих традиционные методы строительной механики и алгоритмы машинного обучения. 

Входные параметры, описывающие основные геометрические и физико-механические характеристики ко-

лонн, сгенерированы с равномерным шагом в диапазонах, характерных для реальных конструкций, что позво-

лило охватить широкий спектр возможных комбинаций. 

Ключевые параметры: a — наружный размер поперечного сечения колонны, мм; t — толщина стенки сталь-

ной квадратной трубы, мм; Ry — предел текучести стали, МПа; Rb — прочность бетона при сжатии, МПа. 

Выходным параметром является несущая способность трубобетонных колонн Nult, кН. Этот показатель был 

получен в результате численных экспериментов, выполненных по методике, приведенной в работе [24]. Расчеты 

учитывали сложное взаимодействие стальной трубы и бетонного сердечника, включая совместную работу мате-

риалов и их деформационное поведение. 

В таблице 1 частично представлен анализируемый массив данных. Общий объем обучающей выборки соста-

вил 22 308 экземпляров. 

Для улучшения качества моделей была проведена предобработка данных: нормализация, разделение данных 

и кросс-валидация. Значения каждого параметра были масштабированы в диапазоне (0–1) для предотвращения 

доминирования признаков с большими значениями. Сгенерированные данные были разделены на тренировочные 

(80 %) и тестовые (20 %) массивы для обучения моделей и их оценки. 

Для анализа данных и построения моделей прогнозирования прочности центрально сжатых трубобетонных 

колонн квадратного сечения использовались следующие алгоритмы машинного обучения: Линейная регрессия 

(Linear Regression), решающее дерево (Decision Tree), градиентный бустинг (Gradient Boosting, XGBoost), регрес-

сор случайного леса (Random Forest Regressor, RFR). 
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Таблица 1 

Таблица сгенерированных данных 

№ a, мм t, мм Ry, МПа Rb, Мпа Nult, кН 

1 100 3,00 220 10 349,71 

2 100 3,45 220 10 385,27 

3 100 3,91 220 10 420,72 

4 100 4,36 220 10 455,76 

5 100 4,82 220 10 490,38 

6 100 5,27 220 10 524,59 

7 100 5,27 220 10 524,59 

8 100 5,73 220 10 558,38 

9 100 6,18 220 10 591,76 

10 100 6,64 220 10 625,31 

11 100 7,09 220 10 657,89 

… … … … … … 

22299 500 10,55 840 120 44248,28 

22300 500 11,82 840 120 45887,56 

22301 500 13,09 840 120 47511,10 

22302 500 14,36 840 120 49118,97 

22303 500 15,64 840 120 50759,78 

22304 500 16,91 840 120 52338,05 

22305 500 18,18 840 120 53900,79 

22306 500 19,45 840 120 55501,41 

22307 500 20,73 840 120 57089,77 

22308 500 22,00 840 120 58609,37 

При нормализации параметров был применен метод регуляризации, при оптимизации — метод Optuna, при 

подборе гиперпараметров — GridSearchCV, RandomizedSearchCV. Диапазон значений параметров для модели 

CatBoost составил: iterations — 1000–1500; depth — 4–8; learning_rate — 0,1–0,6; l2 reg_lambda — 1,9–4,9. Для 

RFR: n_estimators — 100–250; max_depth — 10–20; min_samples_leaf — 1–4. Поскольку в модели RFR отсутствует 

опция слежения за итерациями, обучение модели возможно с разным количеством деревьев и анализом средне-

квадратичной ошибки (MSE). При малом количестве деревьев модель RFR недообучена и показывает низкую 

оценку качества, при увеличении количества деревьев оценка MSE стабилизируется, и оценка качества модели 

становится удовлетворительной. 

Для обученных моделей также проводился анализ важности признаков путем оценки степени влияния каж-

дого входного параметра на итоговые предсказания модели. Данный подход позволил определить, насколько 

сильно изменяются результаты предсказания при изменении значений конкретного признака. 

Результаты исследования. Статистические характеристики исходного набора данных приведены в виде таб-

лицы (таблица 2). Основные показатели: размер выборки, среднее выборочное, рассеяние вариант, экстремумы 

значений переменных. Совокупность данных показателей помогает провести статистически анализ переменных, 

определить их разброс относительно своего центра, показать асимметричность распределения, вывести законы 

распределения данных вариационных рядов. 

Таблица 2 

Таблица статистических характеристик 

Параметр a, мм t, мм Ry, МПа Rb, МПа Nult, кН 

Количество 22308 22308 22308 22308 22308 

Среднее 253,85 9,92 530,00 65,0 10564,50 

Стандартное отклонение 128,40 5,06 196,07 34,3 10419,09 

min 100,00 3,00 220,00 10,0 349,71 

max 500,00 22,00 840,00 120,0 58609,37 

На рис. 1 показана корреляция между параметрами модели. Наблюдается сильная корреляция (0,6 0,9  ) 

между параметрами: наружным размером поперечного сечения колонны и толщиной стенки стальной квадратной 

трубы (
/ 0,7a t  ); наружным размером поперечного сечения колонны и несущей способностью трубобетонных 

колонн (
/ 0,88

ulta N  ); толщиной стенки стальной квадратной трубы и несущей способностью трубобетонных 

колонн (
/ 0,73

ultt N  ). 
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Рис. 1. Корреляционная матрица  

В ходе исследования основное внимание было уделено алгоритму градиентного бустинга CatBoost, который 

показал наилучшие результаты среди протестированных алгоритмов (R2 = 0,98). 

Наиболее значимым параметром модели CatBoost является наружный размер поперечного сечения колонны, 

его значимость составляет — 96 %, доля влияния прочности бетона при сжатии составила — 33 %, предела теку-

чести стали — 28 %, толщины стенки стальной квадратной трубы — 20 %. Наиболее значимые параметры модели 

RFR и их степени важности распределились следующим образом: наружный размер поперечного сечения ко-

лонны — 92 %, прочность бетона при сжатии — 21 %, предел текучести стали — 17 %, толщина стенки стальной 

квадратной трубы — 14 %. Значимость факторов влияния по обеим моделям совпадает, количественная оценка 

вклада каждого признака наглядно представлена на рис. 2 и 3 соответственно. 

 

Рис. 2. Оценка важности признаков для CatBoost  

 

Рис. 3. Оценка важности признаков для RFR  
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Полученные оптимальные значения параметров в процессе обучения моделей представлены в таблице 3. 

Таблица 3 

Оптимальные значения параметров моделей 

Модель Параметр Значение 

CatBoost 

Iterations (число итераций) 1500 

Depth (глубина обучения) 5 

Learning rate (скорость обучения) 0,4 

l2 leaf reg (L2-регуляризация для предотвращения переобучения) 2,8 

RFR 

N estimators (количество деревьев в ансамбле) 180 

Max depth (максимальная глубина деревьев) 6 

Min samples leaf (минимальное число образцов в листе дерева) 1 

Оценка качества моделей представлена в таблице 4. 

Таблица 4 

Метрики качества модели 

Метрика/Модель CatBoost RFR 

MAE 3,1 7,8 

MSE  5,4 4,5 

MAPE, % 0,015 0,007 

R2 0,98 0,94 

На рис. 4, 5 представлены гистограммы ошибок: по оси ординат фактические значения, по оси абсцисс — 

предсказанные.  

Обсуждение и заключение. Данная работа представляет разносторонний взгляд на существующие методы 

прогнозирования прочности трубобетонных колонн и подчеркивает преимущества применения машинного 

обучения в данной области. 

Использование методов машинного обучения, в частности CatBoost, позволило выявить точные зависимости 

между параметрами, превосходя традиционные эмпирические методы. Достоверность прогнозирования по вели-

чине R2 для модели, основанной на алгоритме CatBoost, составила 0,98. Модель, основанная на методе Random 

Forest Regressor, показала меньшую точность (R2 = 0,94). 

Анализ значимости признаков показал, что наружный размер поперечного сечения трубобетонной колонны 

является ключевым параметром, оказывающим наибольшее влияние на ее несущую способность. 

В дальнейших исследованиях планируется расширить спектр параметров модели, основываясь на текущих 

результатах с учётом дополнительных факторов. В качестве дополнительных параметров могут выступать экс-

центриситет продольной силы, гибкость элемента, доля длительных нагрузок в суммарной нагрузке и другие. 

 

Рис. 4. Гистограмма ошибок для CatBoost  
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Рис. 5. Гистограмма ошибок для RFR  
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