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Abstract 

Introduction. In this paper, we consider the problem of predicting the strength of square-section centrally compressed 

short concrete-filled tubular columns using machine learning methods. Traditional methods, such as the finite element 

method and the theoretical-experimental approach involving selection of empirical formulas require significant compu-

tational resources and time. At the same time, these methods are not always capable of accounting for complex nonlinear 

dependencies between the parameters. The key objective is to develop a high-precision model capable of predicting the 

load-bearing capacity of columns using the major parameters. 

Materials and Methods. For the current study, a database was generated containing the results of numerical experiments 

on calculating the load-bearing capacity of square-section concrete-filled tubular columns in a physically nonlinear for-

mulation. As part of the study, models based on machine learning methods were designed and implemented using the 

Jupyter Notebook interactive computing platform. The main method is the CatBoost mechanism (Gradient Boosting Re-

gressor). The resulting models were trained by means of nonlinear optimization methods. 

Results. The article evaluates the degree of impact of each of the input parameters on the final predictions of the model. 

The results on the degree of impact for the CatBoost and Random Forrest Regressor (RFR) models are obtained. The 

quality of the resulting models evaluated using the R2 value was 98% for CatBoost and 94% for RFR. 

Discussion and Conclusions. The resulting approach has proved to be highly efficient in predicting the load-bearing capacity 

of concrete-filled tubular columns, providing a balance between the accuracy of the results and computational complexity. 

Keywords: concrete-filled tubular columns, machine learning methods, prediction, load-bearing capacity, artificial intel-

ligence, artificial neural networks 
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такие как метод конечных элементов и теоретико-экспериментальный подход с подбором эмпирических формул, 

требуют значительных вычислительных ресурсов и времени. В то же время эти методы не всегда способны учиты-

вать сложные нелинейные зависимости между параметрами. Основная цель — разработка высокоточной модели, 

способной предсказывать несущую способность колонн на основе ключевых параметров. 

Материалы и методы. Для исследования была сгенерирована база данных, состоящая из результатов числен-

ных экспериментов по расчету несущей способности трубобетонных колонн квадратного поперечного сечения в 

физически нелинейной постановке. В рамках проведенного исследования построены модели на основе методов 

машинного обучения, реализованные с использованием интерактивной вычислительной платформы Jupyter Note-

book. Основным методом является механизм CatBoost (Gradient Boosting Regressor). Обучение построенных мо-

делей произведено с использованием методов нелинейной оптимизации. 

Результаты исследования. В статье проведена оценка степени влияния каждого входного параметра на ито-

говые предсказания модели. Получены результаты по величине степени влияния для моделей CatBoost и Ran-

dom Forrest Regressor (RFR). Оценка качества построенных моделей по величине R2 составила 98 % для 

CatBoost и 94 % — для RFR. 

Обсуждение и заключение. Разработанный подход демонстрирует высокую эффективность в задаче прогнози-

рования несущей способности трубобетонных колонн, обеспечивая баланс между точностью результатов и вы-

числительной сложностью. 

Ключевые слова: трубобетонные колонны, методы машинного обучения, прогнозирование, несущая способ-

ность, искусственный интеллект, искусственные нейронные сети. 
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градостроительстве и планировке территорий. 2025;4(4):44–52. https://doi.org/10.23947/2949-1835-2025-4-4-44-52 

Introduction. Evaluating technical condition of monolithic reinforced concrete structures is remaining an urgent and 

common task, particularly considering there is a need to ensure they are durable and safe. This can be addressed not only 

by means of analytical and computational methods [1–3], but also using the more up-to-date reputable methods of artifi-

cial intelligence (AI) and machine learning (ML) [4–6]. 

The commonly used finite element method (FEM) enables complex physical processes such as the nonlinear behavior 

of materials, interaction of steel and concrete [7], as well as the influence of a range of loads to be accounted for [8]. 

However, the major drawback of the FEM is its high computational complexity and the need for a large number of 

parameters in order to calibrate the model. 

ML methods are a modern data analysis tool allowing one to identify complex nonlinear dependencies between input 

and output parameters [9–11]. Unlike empirical formulas, machine learning enables patterns to be automatically identified 

in large amounts of data making it a more versatile and efficient prediction method. 

In [12], the authors examine the formation of defects in reinforced concrete structures by means of artificial intelli-

gence algorithms such as random forest (RF), support vector machine (SVM), classification and regression tree (CART), 

and gradient boosting. 

In modern practice, convolutional neural networks (CNN) are being increasingly used in order to predict the strength 

of reinforced concrete structures [13–15]. E.g., in [13], the authors developed a CNN that is capable of two-dimensional 

full-scale prediction of crack formation at early stages and description of the entire fracture process. A model capable of 

predicting both crack initiation and propagation was set forth in [14]. In order to monitor the condition of reinforced 

concrete structures at complex construction sites, the authors of [15] made use of a fully convolutional neural network 

(FCN) to segment images and localize cracks on concrete surfaces, accounting for the heterogeneity of concrete proper-

ties. The resulting FCN model minimizes false positive and false negative results and is also of high quality, which enables 

small and complex cracks to be segmented. 

In [16], an automated classifier was developed that also functions as a tool for automatic detection and classification 

of cracks in reinforced concrete columns of different levels of complexity by means of deep CNN (DCNN) methods. The 

suggested DCNN model analyzes complex textures as well as noises and displays high crack detection accuracy of 96% 

due to the depth of the model layers and expansion of each layer in a parallel manner. 

In order to predict cracks in time, the authors of [17] made a step forward in their research and designed a hybrid 

model combining DCNN and recurrent neural networks (RNN). 

https://doi.org/10.23947/2949-1835-2025-4-4-44-52


Modern Trends in Construction, Urban and Territorial Planning. 2025;4(4):44–52. eISSN 2949–1835 

 

 

h
tt

p
s:

//
w

w
w

.s
ts

g
-d

o
n

st
u
.r

u
 

46 

Hence there is no doubt that ML algorithms have a few advantages, such as identifying patterns in large amounts of 

data, detecting hidden patterns and dependencies accounting for the multidimensional nature of data, automatic analysis 

of evaluating the condition of reinforced concrete structures using the major parameters, optimization of ML algorithms 

and parallel computing. 

However, these ML algorithms have some drawbacks, such as inaccuracy or weakness, limited generalization ability, 

and low-speed operation [18, 19]. One of the key ones is the dependence of machine learning models on the quality of 

training data and its volume. 

While training most artificial intelligence models, data from field experiments is used in order to predict the strength 

of concrete-filled tubular columns [20–22]. Such experiments are typically conducted on samples with relatively small 

cross-sectional dimensions compared to actual structures. Considering the poor ability of machine learning methods to 

extrapolate data, serious errors are likely while predicting the load-bearing capacity of actual structures. A solution would 

be to make use of a combined approach, where training data is generated by means of a finite element calculation of 

structures with actual dimensions using a method validated based on experimental data. 

The objective of the study is to develop machine-learning models for predicting the strength of centrally compressed 

square-section concrete-filled tubular columns using the data obtained as described above. 

Materials and Methods. A database was generated for this study representing the results of numerical experiments 

in order to calculate the load-bearing capacity of short square-section concrete-filled tubular columns according to the 

methodology described in [23]. That data was used in order to develop and analyze models combining the traditional 

methods of structural mechanics and machine learning algorithms. 

The input parameters describing the basic geometric as well as physical and mechanical characteristics of the columns 

were generated in uniform increments in the ranges typical of actual structures, which enabled a wide range of possible 

combinations to be covered. 

The key parameters are as follows: a is the external size of the column cross section, mm; t is the wall thickness of a 

steel square tube, mm; Ry is the yield strength of steel, МPа; Rb is the compressive strength of concrete, МPа. 

The output parameter is the load-bearing capacity of the concrete-filled tubular columns Nult, kN. This indicator was 

obtained as a result of numerical experiments performed according to the methodology described in [24]. The calculations 

accounted for the complex interaction of the steel tube and the concrete core, including the joint operation of the materials 

and their deformation behavior. 

The analyzed data array is partially shown in Table 1. The training sample included the total of 22,308 items. 

Table 1 

Table of the generated data 

No. a, mm t, mm Ry, МPа Rb, МPа Nult, kN 

1 100 3.00 220 10 349.71 

2 100 3.45 220 10 385.27 

3 100 3.91 220 10 420.72 

4 100 4.36 220 10 455.76 

5 100 4.82 220 10 490.38 

6 100 5.27 220 10 524.59 

7 100 5.27 220 10 524.59 

8 100 5.73 220 10 558.38 

9 100 6.18 220 10 591.76 

10 100 6.64 220 10 625.31 

11 100 7.09 220 10 657.89 

… … … … … … 

22.299 500 10.55 840 120 44248.28 

22.300 500 11.82 840 120 45887.56 

22.301 500 13.09 840 120 47511.10 

22.302 500 14.36 840 120 49118.97 

22.303 500 15.64 840 120 50759.78 

22.304 500 16.91 840 120 52338.05 

22.305 500 18.18 840 120 53900.79 

22.306 500 19.45 840 120 55501.41 

22.307 500 20.73 840 120 57089.77 

22.308 500 22.00 840 120 58609.37 



Kondratieva TN, et al. Predicting the Load-Bearing Capacity of Square-Section Pipe-Concrete Col-umns Using Machine Learning Methods 

  

  

B
u
il

d
in

g
 c

o
n
st

ru
ct

io
n
s,

 b
u
il

d
in

g
s 

an
d

 e
n

g
in

ee
ri

n
g
 s

tr
u
ct

u
re

s 

47 

In order to improve the quality of the models, data preprocessing was performed: normalization, data separation, and 

cross-validation. The values of each parameter were scaled in the range (0–1) in order to prevent the features with large 

values from dominating. The generated data was divided into the training (80%) and test (20%) arrays for the model 

training and evaluation. 

The following machine learning algorithms were used to analyze the data and design models for predicting the strength 

of centrally compressed square-section concrete-filled tubular columns: Linear Regression, Decision Tree, Gradient 

Boosting, Random Forest Regressor, RFR. 

The regularization method was used to normalize the parameters, the Optuna method for optimization, and 

GridSearchCV and RandomizedSearchCV for hyperparameter selection. The range of parameter values for the CatBoost 

model was: iterations — 1000–1500; depth — 4–8; learning_rate — 0.1–0.6; l2 reg_lambda — 1.9–4.9. For RFR:  

n_estimators — 100–250; max_depth — 10–20; min_samples_leaf — 1–4. As the RFR model has no iteration tracking 

option, model training is possible with a different number of trees and root mean square error (MSE) analysis. With a 

small number of trees, the RFR model is undertrained and displays a low quality score. As the number of trees increases, 

the MSE score gets stabilized and the quality score of the model becomes satisfactory. 

For the trained models, the significance of the features was also analyzed by evaluating the degree of impact of each 

input parameter on the final predictions of the model. This approach allowed us to identify an extent to which the predic-

tion results change when do the values of a certain feature. 

Research Results. The statistical characteristics of the initial data set are shown in a table (Table 2). The main indi-

cators are as follows: sample size, sample mean, variation dispersion, extremes of the variable values. All of these indi-

cators help to statistically analyze the variables, identify their range in relation to their centre, show the asymmetry of the 

distribution, and deduce the distribution laws of these variation rows. 

Table 2 

Table of the statistical characteristics 

Parameter a, mm t, mm Ry, MPa Rb, MPa Nult, kN 

Number 22308 22308 22308 22308 22308 

Mean 253.85 9.92 530.00 65.0 10564.50 

Standard deviation 128.40 5.06 196.07 34.3 10419.09 

min 100.00 3.00 220.00 10.0 349.71 

max 500.00 22.00 840.00 120.0 58609.37 

Fig. 1 shows the correlation between the model parameters. There is a strong correlation ( ) between 

the parameters: the external size of the column cross-section and the wall thickness of the steel square tube ( / 0.7a t  ); 

the external size of the column cross-section and the load-bearing capacity of the concrete-filled tubular columns 

( ); the wall thickness of the steel square tube and the load-bearing capacity of concrete-filled tubular columns 

( ). 

 

Fig. 1. Correlation matrix 

0.6 0.9 
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The study focused on the CatBoost gradient boosting algorithm that showed the best results among the tested algo-

rithms (R2 = 0.98). 

The most significant parameter of the CatBoost model is the external cross-sectional dimension of the column, its 

significance is 96%, the impact of the compressive strength of concrete was 33%, the yield strength of steel was 28%, 

and the wall thickness of the square steel tube was 20%. The most significant parameters of the RFR model and their 

degree of importance were distributed as follows: the external cross-sectional dimension of the column was 92%, the 

compressive strength of concrete was 21%, the yield strength of steel was 17%, and the wall thickness of the square steel 

tube was 14%. The significance of the influencing factors for both models coincides, and the quantitative assessment of 

the contribution of each feature is clearly shown in Fig. 2 and 3, respectively. 

 

Fig. 2. Evaluation of the signifance of the features for CatBoost  

 

Fig. 3. Evaluation of the signifance of the features for RFR  

The optimal parameter values obtained during the model training are shown in Table 3. 

Table 3 

Optimal values of the model parameters 

Model Parameter Value 

CatBoost 

Iterations  1500 

Depth  5 

Learning rate 0.4 

l2 leaf reg  2.8 

RFR 

N estimators  180 

Max depth  6 

Min samples leaf  1 

The evaluation of the quality of the models is shown in Table 4. 

a, mm 

Rb, MPa 

Ry, MPa 

t, mm 

0           10         20         30          40          50        

a, mm 

Rb, MPa 

Ry, MPa 

t, mm 

 0             0.1             0.2             0.3            0.4             0.5            0.6        
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Table 4 

Model quality metrics 

Metrics/Model CatBoost RFR 

MAE 3.1 7.8 

MSE 5.4 4.5 

MAPE, % 0.015 0.007 

R2 0.98 0.94 

Fig. 4 and 5 show the error histograms: the actual values along the ordinate axis and the predicted ones along the 

abscissa axis. 

 

Fig. 4. Error histogram for CatBoost  

 

Fig. 5. Error histogram for RFR  

Discussion and Conclusion. This study has provided a comprehensive overview of the existing methods for predict-

ing the strength of concrete-filled tubular columns and outlines the advantages of using machine learning in this field. 
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The use of machine learning methods, particularly CatBoost, has enabled us to identify the precise dependencies 

between the parameters outperforming the traditional empirical methods. The prediction reliability using the R2 value for 

the model based on the CatBoost algorithm was 0.98. The model based on the Random Forest Regressor method displayed 

a lower accuracy (R2 = 0.94). 

According to the analysis of the significance of the features, the external cross-sectional dimension of a concrete-filled 

tubular column is the major parameter that has the greatest impact on its load-bearing capacity. 

In further studies, the range of model parameters based on the current results is going to be expanded considering 

some additional factors. The additional parameters can include the eccentricity of a longitudinal force, the flexibility of 

an element, the proportion of prolonged loads in the total loading, etc. 
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