Preview

Современные тенденции в строительстве, градостроительстве и планировке территорий

Расширенный поиск

Прогнозирование несущей способности трубобетонных колонн квадратного сечения при помощи методов машинного обучения

https://doi.org/10.23947/2949-1835-2025-4-4-44-52

EDN: BCUPRW

Аннотация

Введение. В данной работе рассматривается задача прогнозирования прочности центрально сжатых коротких трубобетонных колонн квадратного сечения с использованием методов машинного обучения. Традиционные методы, такие как метод конечных элементов и теоретико-экспериментальный подход с подбором эмпирических формул, требуют значительных вычислительных ресурсов и времени. В то же время эти методы не всегда способны учитывать сложные нелинейные зависимости между параметрами. Основная цель — разработка высокоточной модели, способной предсказывать несущую способность колонн на основе ключевых параметров.

Материалы и методы. Для исследования была сгенерирована база данных, состоящая из результатов численных экспериментов по расчету несущей способности трубобетонных колонн квадратного поперечного сечения в физически нелинейной постановке. В рамках проведенного исследования построены модели на основе методов машинного обучения, реализованные с использованием интерактивной вычислительной платформы Jupyter Notebook. Основным методом является механизм CatBoost (Gradient Boosting Regressor). Обучение построенных моделей произведено с использованием методов нелинейной оптимизации.

Результаты исследования. В статье проведена оценка степени влияния каждого входного параметра на итоговые предсказания модели. Получены результаты по величине степени влияния для моделей CatBoost и Random Forrest Regressor (RFR). Оценка качества построенных моделей по величине R2 составила 98 % для CatBoost и 94 % — для RFR.

Обсуждение и заключение. Разработанный подход демонстрирует высокую эффективность в задаче прогнозирования несущей способности трубобетонных колонн, обеспечивая баланс между точностью результатов и вычислительной сложностью.

Об авторах

Т. Н. Кондратьева
Донской государственный технический университет
Россия

Кондратьева Татьяна Николаевна, кандидат технических наук, доцент, доцент кафедры математики и информатики

344003, г. Ростов-на-Дону, пл. Гагарина, 1



А. С. Чепурненко
Донской государственный технический университет
Россия

Чепурненко Антон Сергеевич, доктор технических наук, доцент, профессор кафедры строительной механики и теории сооружений

344003, г. Ростов-на-Дону, пл. Гагарина, 1



Список литературы

1. Abd‐El‐Nabi E, El‐Helloty A, Summra A. Numerical analysis of reinforced concrete buildings subjected to blast load. Structural Concrete. 2023;24(3):3727–3743. https://doi.org/10.1002/suco.202200726

2. Jianguo Ning, Fanlin Meng, Tianbao Ma, Xiangzhao Xu. Failure analysis of reinforced concrete slab under impact loading using a novel numerical method. International Journal of Impact Engineering. 2020;144:103647. https://doi.org/10.1016/j.ijimpeng.2020.103647

3. Kumar V, Kartik KV, Iqbal MA. Experimental and numerical investigation of reinforced concrete slabs under blast loading. Engineering Structures. 2020;(206):110125. https://doi.org/10.1016/j.engstruct.2019.110125

4. Beskopylny AN, Stel’makh SA, Shcherban’ EM, Mailyan LR, Meskhi B, Razveeva I. et al. Prediction of the Compressive Strength of Vibrocentrifuged Concrete Using Machine Learning Methods. Buildings. 2024;14(377). https://doi.org/10.3390/buildings14020377

5. Beskopylny AN, Stel’makh SA, Shcherban’ EM, Razveeva I, Kozhakin A, Kondratieva TN et al. Prediction of the Properties of Vibro-Centrifuged Variatropic Concrete in Aggressive Environments Using Machine Learning Methods. Buildings 2024;(14):1198. https://doi.org/10.3390/buildings14051198

6. Kondratieva TN, Chepurnenko AS. Prediction of Rheological Parameters of Polymers by Machine Learning Methods. Advanced Engineering Research. 2024;24(1):36–47. https://doi.org/10.23947/2687-1653-2024-24-1-36-47

7. Klemczak B, Żmij A. Insight into thermal stress distribution and required reinforcement reducing early-age cracking in mass foundation slabs. Materials. 2021;14(3):477. https://doi.org/10.3390/ma14030477

8. Talaat M, Yehia E, Mazek SA, Genidi M, Sherif A. Finite element analysis of RC buildings subjected to blast loading. Ain Shams engineering journal. 2022;13(4):101689. https://doi.org/10.1016/j.asej.2021.101689

9. Chepurnenko AS, Kondratieva TN, Deberdeev TR, Akopyan VF, Avakov AA. Prediction of Rheological Parameters of Polymers Using the CatBoost Gradient Boosting Algorithm. Polymer Science, Series D. 2024;17(1):121–128. https://doi.org/10.1134/S199542122370020X

10. Kondratieva TN, Chepurnenko AS, Poliakova KA, Rodionov KA. CatBoost algorithms to predict the load-bearing capacity of centrally compressed short CFST columns of circular cross-section. E3S Web Conf. 2024;583:06009. https://doi.org/10.1051/e3sconf/202458306009

11. Chepurnenko AS, Kondratieva TN, Al-Wali E. Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods. Baghdad Science Journal. 2023;20(6):2488–2488. https://doi.org/10.21123/bsj.2023.8819

12. Althoey F, Amin MN, Khan K, Usman MM, Khan MA. Machine learning based computational approach for crack width detection of self-healing concrete. Case Studies in Construction Materials. 2022;(17):e01610. https://doi.org/10.1016/j.cscm.2022.e0161

13. Koopas RN, Rezaei S, Rauter N, Ostwald R, Lammering R. A spatiotemporal deep learning framework for prediction of crack dynamics in heterogeneous solids: Efficient mapping of concrete microstructures to its fracture properties. Engineering Fracture Mechanics. 2025;(314):110675. https://doi.org/10.1016/j.engfracmech.2024.110675

14. Ali R, Chuah JH, Talip M, Mokhtar N, Shoaib MA. Structural crack detection using deep convolutional neural networks. Automation in Construction. 2022;(133):103989. https://doi.org/10.1016/j.autcon.2021.103989

15. Xinyu Ye, Tao Jin, Li ZX, Chen Pengyu, Ma Si Yuan, Yi Ding, Yihong Ou. Structural crack detection from benchmark data sets using pruned fully convolutional networks. Journal of Structural Engineering. 2021;147(11):04721008. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003140

16. Wang Weidong, Hu Wenbo, Wang Wenjuan, Xu Xinyue, Wang Mengdi, Shi Youyin et al. Automated crack severity level detection and classification for ballastless track slab using deep convolutional neural network. Automation in Construction. 2021;(124):103484. https://doi.org/10.1016/j.autcon.2020.103484

17. Ganesh Kolappan Geetha, Hyun-Jung Yang, Sung-Han Sim. Fast detection of missing thin propagating cracks during deep-learning-based concrete crack/non-crack classification. Sensors. 2023;23(3):1419. https://doi.org/10.3390/s23031419

18. Qijun Chen, Yuxi Xie, Yu Ao, Tiange Li, Guorong Chen, Shaofei Ren et al. A deep neural network inverse solution to recover pre-crash impact data of car collisions. Transportation research part C: emerging technologies. 2021;(126):103009. https://doi.org/10.1016/j.trc.2021.103009

19. Guorong Chen, Tiange Li, Qijun Chen, Shaofei Ren, Chao Wang, Shaofan Li. Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures. Computational Mechanics. 2019;(64):435–449. https://doi.org/10.1007/s00466-019-01706-2

20. Viet-Linh Tran, Duc-Kien Thai, Duy-Duan Nguyen. Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Structures. 2020;(151):106720. https://doi.org/10.1016/j.tws.2020.106720

21. Cigdem Avci-Karatas. Artificial neural network (ANN) based prediction of ultimate axial load capacity of concrete-filled steel tube columns (CFSTCs). International Journal of Steel Structures. 2022;22(5):1341–1358. https://doi.org/10.1007/s13296-022-00645-8

22. Abidhan Bardhan, Rahul Biswas, Navid Kardani, Mudassir Iqbal, Pijush Samui, Singh M.P. et al. A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns. Construction and Building Materials. 2022;(337):127454. https://doi.org/10.1016/j.conbuildmat.2022.127454

23. Chepurnenko AS, Yazyev BM, Turina VS, Akopyan VF. Artificial intelligence models for determining the strength of centrally compressed pipe-concrete columns with square cross-section. Magazine of Civil Engineering. 2024;17(6):13008. https://doi.org/10.34910/MCE.130.8

24. Chepurnenko A, Yazyev B, Meskhi B, Beskopylny A, Khashkhozhev K, Chepurnenko V. Simplified 2D finite element model for calculation of the bearing capacity of eccentrically compressed concrete-filled steel tubular columns. Applied Sciences. 2021;11(24):11645. https://doi.org/10.3390/app112411645


Рецензия

Для цитирования:


Кондратьева Т.Н., Чепурненко А.С. Прогнозирование несущей способности трубобетонных колонн квадратного сечения при помощи методов машинного обучения. Современные тенденции в строительстве, градостроительстве и планировке территорий. 2025;4(4):44-52. https://doi.org/10.23947/2949-1835-2025-4-4-44-52. EDN: BCUPRW

For citation:


Kondratieva T.N., Chepurnenko A.S. Predicting the Load-Bearing Capacity of Square-Section Pipe-Concrete Columns Using Machine Learning Methods. Modern Trends in Construction, Urban and Territorial Planning. 2025;4(4):44-52. https://doi.org/10.23947/2949-1835-2025-4-4-44-52. EDN: BCUPRW

Просмотров: 38

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2949-1835 (Online)